
m LABORATORY FOR MASSACHUSETTSE OF

N COMPUTER SCIENCE TECHNOLOGY

MIT/LCS/TM-397

TEMPORAL, PROCESSOR, AND SPATIAL
LOCALITY IN MULTIPROCESSOR

MEMORY REFERENCES

Anant Agarwal D T k C
Anoop Gupta . ELECTED

S. 0CT 3 0 1989

June 1989

545 TECHNOLOGY SQUARE, CAMBRIDGE, MASSACHUSETTS 02139

SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
Ia. REPORT SECURITY CLASSIFICATION lb RESTRICTIVE MARKINGS

Unclassified
2a. SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION /AVAILABILITY OF REPORT

Approved for public release; distribution

2b. DECLASSIFICATION J DOWNGRADING SCHEDULE is unlimited.

4. PERFORMING ORGANiZATION REPORT NUMBER(Si 5 MONITORING ORGANIZATION REPORT NUMBER(S)

MYi'[/LCST --3q7 N)0]4-87-K-0825

6a. NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

MIT Laboratory for Computer (If applicable) Office of Naval Research/Department of Navy

Science I
6c. ADDRESS (Oty, State, and ZIP Code) 7b ADDRESS (City, State, and ZIP Code)
545 Technology Square Information Systems Program

Cambridge, MA 02139 Arlington, VA 22217

Ba. NAME 0= rUNDING/SPONSORING 8b OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)

DARPA/DOD

ac. ADDRESS (Ciy, State, ad ZIP Code) 10. SOURCE OF FUNDING NUMBERS
1400 Wilson Boulevard PROGRAM PROJECT TASK WORK UNIT

Arlington, VA 22217 ELEMENT NO. NO. NO ACCESSION NO

11. TITLE (Include Security Classifcation)

Tenpral,_ Processor, andpatial Locality in Multiprocessor Memory References

12. PERSONAL AUTHOR(S)

Agarwal- A. and Gunta. A.
13a. TYPE Or REPORT I13b. TIME COVERED ?4. DATE OF REPORT (Year. Month, Day) is PAGE COUNT
Technical I FROM TO 1989 June 18

16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD I GROUP SUB-GROUP Locality, temporal locality, spatial locality, cache

coherence, shared-memory multiprocessors, multiprocessor

locality, 'etwork traffic, snoopy caches
19. ABSTRACT (Continue on reverse if necessary and identify by block number)

p The performance of cache-coherent multiprocessors is strongly influenced by locality

in the memory reference behavior of parallel applications. While the notions of temporal

and spatial locality in uniprocessor memory references are well understood, the correspond-

ing notions of locality in multiprocessors and their impact on multiprocessor cache behav-

ior are not clear. A locality model suitable for multiprocessor cache evaluation is de-

rived by viewing memory references as streams of processor identifiers directed at specific

cache/memory blocks. This viewpoint differs from the traditional uniprocessor approach

that uses streams of addresses to different blocks emanating form specific processors. Our

view is based on the intuition that cache coherence traffic in multiprocessor is largely

determined by the number of processors accessing a location, the frequency with which they

access the location, and the sequence in which their accesses occur. The specific loca-

tions accessed by each processor, the time order of access to different locations, and the

size of the working set play a smaller role in determining the cache coherence traffic,--)

20 DISTP'IDITION/AVAILABILITY OF ABSTRACT 21 ABSTRACT 'ECURITV C ASSIFICATION

El UNCLASSIFIEDIUNLIMITED C SAME AS RPT. EC DTIC USERS Unclassified

22a. NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (include Area Code) 22c OFFICE SYMBOL

Judy Little, Publications Coordinator (617) 253-5894

DD FORM 1473, 84 MAR 83 APR edition may be used until exhausted SECURITY CLASSIFICATION OF THIS PAGE
All other editions are obsolete

*cs Gew=t d ffi: 1-6070

Unclassified

19. although the%'y Still influence intrinsic cache performance. Looking at traces
irom the viewpoillt Of a memory block leads to a new notion of reference locality

ror multiprocessors, called processor locality. In this paper, we study the

Lemporal, spatial, and processor locality in the memory reference patterns

oi three parillel application-. Based on the observed locality, we then reflect

on the expected cacho' behavior of the three applications. /

Ac e~. For

B-
N T ,i. "

i s t rl I ,-,. Ion

C stribi: 'c' _

I Avalle.b"itv 'Codes

Aviil and/or

Dist Special

AwL

C,

Temporal, Processor, and Spatial Locality
in

Multiprocessor Memory References*

Anant Agarwal Anoop Gupta
Laboratory for Computer Science Compu'ter Systems Laboratory

Massachusetts Institute of Technology Stanford UTniversity
Cambridge, MA 02139 Stanford, CA 94305

Abstract

The performance of cache-coherent multiprocessors is strongly influenced by locality in
the memory reference behavior of parallel applications. While the notions of temporal and
spatial locality in uniprocessor inemury references are well understood, the corresponding
notions of locality in multiprocessors and their impact on multiprocessor cache behavior are

not clear. A locality model suitable for multiprocessor cache evaluation is derived by viewing
memory references as streams of processor identifiers directed at specific cache/memory
blocks. This viewpoint differs from the traditional uniprocessor approach that uses streams
of addresses to different blocks emanating from specific processors. Our view is based on the
intuition that cache coherence traffic in multiprocessors is largely determined by the number
of processors accessing a location, the frequency with which they access the location, and the
sequence in which their accesses occur. The specific locations accessed by each processor.
the time order of access to different locations, and , . - of the working set play a smaller
role in determining the cache coherence traffic, althl, ,-i, iey still influence intrinsic cache
performance. Looking at traces from the viewpoint ol . :mory block leads to a new notion
of reference locality for multiprocessors, called processor locality. In this paper, we study the
temporal, spatial, and processor locality in the memory reference patterns of three parallel
applications. Based on the observed locality, we then reflect on the expected cache behavior
of the three applications.

1 Introduction

Multiprocessors often use caches to reduce their network bandwidth requirements. Caches retain

recently accessed data so that repeat references to this data in the near future and will not

require network traversals. Repeated access to the same data in a given interval of time is the

property of temporal locality of memory references and has been well studied in single processor

systems [1, 2]. Spatial locality of memory references is another related property of memory
references that places a high probability of access to data close to previously accessed data.
Again, +his property of single processor pr(ograms has been ',., ,''ly ob;erv(l. Tho "l'lilily o1'

cache-coherent multiprocessors is strongly pr,,di-.i ed on whether the i multiproces..,.r caches can

exploit locality of memory referencing.

Preliminary results of this study were Teportedl ill '"igll,,lcf is I18R.

earl, at t I or1ott gI lid(nlrI tI t(lI* ig of I l1oI fiwefiorv access patterns of parallIelI p rocessing
~ pplicalio Sis iieces--arv to dterm'fl Ai ne sikk oeiga iiiZatiioty Of t1W me1morY bier at liv in rn iii-

ijrt'c -or,,. For ('xanhfple. svver ;iI ciclie coii~st ''1v alIgorithm ns proposed ill tile literature are
iail onl subtle differences in l ie expected inior ' reference patterns; lacking a characterization
of iiilt iprocessor menior ' re feren cinfg locality. it is hiard to obtain insight into the benefits of
onescl4.m over anot her. Wh ile somie previous s11(1ies have looked at shared-memory reference

pattfrin (c, efg 3'), theY dIhIid iot aliad Yze the temporal. spdttial. aid processor locality of shared

I'lnforr inlatelY. nil1ti pri lcoe, or localitY mode+, That we can use to aid in our understanding
of the reference patternis of parallel svst ems (10 not exist. The wvell known not ions of local it v
ill ini-procCssor systemsl- do inot carry over st raighlt forwardly. Consider, for examiple. lie

seu iof' memory references r 2 r .~r~to thle samre memory block. Wh ile such temphoral
locality cani 1ews lisvfl exploi oil b\ a An 11 prcs ah. 1h. Ilie degree to W11icV a multi proces ,or

uses s it locality depenids on \k bicli processor i!!;tle I lie imdivi,!;al ieieiviics and whether the
j"111.'lCO ereON realds of. %%rile>. 'I Iwl iegat ive e xt relze case would c,..reslioiid to each reference
ii(a writ(' and enamtjig mi a dife(reril lirocsow.

Slmtjiar:\v, block sieeffcl.s; aire bard to estimate. Increasing the block size could inipro''

k ay e) v ;ptuing addiltiral dita wordis in the block that wviil lbe referenced by Ole
PP0 (7il tie mear ir: tm-. Iwever, lwo daitawords being writ ten byd(ifferent proce ssors coul~d

fall in to th beSam, block owi ii to at block size in crease and prove harmful to cache performance,.

\\epr~er ta siiple i liaract erizatlin of multi processor memory references arid derive a lo-
cly vaedlThIat is lisefli Illi a mnul tipirocessor context. Thei key to the model is that we focus
ll T II, seCt o~f referenices by one(or nore, processors to a givcn nmemiory' block. We introduce thle
notio lollf pcoccssoc locality ;., lie average numtber of repeat references to a miemory block by
lie same, processor. Spiecific variat ions of processor locality can I.w defined for use in differ

entl ap1ica '- r exam 1)1., one inlt eresting form of processor lo(alit v that provides insight
iiito ik nmcrii p bse cache coheorence schemes is the sequences of repeat references to a given
irrelinorY block liv tho samle processor, given hlat at least one of the references is a write IL11
A si~l xdfeetdeili ti hiii iglit Count just thle niumber of Wmesto a bio k by the sa me(

Ir bfore at reference by an iothier p~rocessor. Eggers andI Kaz [,') propos~ d using such a
_(TiC ci (aracterizfigl. Inu ti p rocessor flemnory references.

I iI ts Ob viotsuse" ;it !ga ii i gitli Tiito Ihe Iperfornian.-v of ache coli rence sciien es
I calif v ' ntkric, can ;ilso be iised to evaluate Ilie efficacy of bliock st rictulrinig aloritliui;
I')p co-iti eiitce locatlitY ini tue titor referen cintg of shared miemory multi processors.

W" e our ()i locality ucl;irict.'ruziitIon to analyvze the locality' patterns i tHiree, parallel appli-
catcs ing_ add ress t rilce datal. Ni tilt proce-ssor add ress traces are do rivecl from thtese parallel

lpia oll, runr1ufi11g1 itider Iei MIACHI operatiiigs sstem on a shtared-memory itiiultiprocessor. Anl
i'xtemiil .*TI address) tracinuc sclienie i inplenierited on a .4- C PU DEC I.VAX 8350 [61 provided
tIIe rr1ie dta used In tis)tujdy. 'V lie a pplica tion s in chide ParaO PS5- -a, parallel i mplemnieita-
tiom fti OI-0PS.7) rule-bas.ed lPtri~g.l-Thior aI parallel logic simulator, and 1.ociisRouite aI
'I1d-cl rolii1 . lot VL'I ctiu~rl(etls.t

Our resils sgetlt la 11ualed references rlI.,pkav a: significantl aiiioii of tempor(ual localit%
a ind)nil a tiiodira tfo a uin if proce~ssor boia 1 t. '1 'he(average tiufibek of read atnd write'

tr t i i e ;,ur,;u 'r In i t I ! . Ilfu i , ivitI'F* ii -r Iii ~na I >ignwt I Ie '1i . :,~

eeren cos to at \vrl't e- s are d)ock before a renif refereno ice o .1 and~ 2 res-;pecti ve!v. lli-
A-~alil v is ex ploitedl Ly the w~itehack clia. "F cache iofi'r'tiev .wclimsii to reilice t& (Mi Qf

references to shared dlata.

T his paper is organized as fcl ows. Sect iol 2 thInvis oulr mu1 Ilirocessor muodel andl thli t(ni-
nology used thIiroughouit thle paper. Section11 3 pmrmllts lmAlgroun id iiiformiation about the T U M
addlress tracing techie and Aa applicaithmn~ nwmA.;~e Sectfions .1 constitutes the bulk of tho
paper and is devoted to atialyzing locality ill I lhe parallel liaces, and st udyi ng the impact of' the
reference chiarac terist ics on cach le consistenlcy a Igorithiiis. Specifically, Section 4.1 assesses the
ternporal local it v in shared] references, Sect ion 4.2 thle processor localit and Sect in 4.3 analyzes
spal lal localityv in the traces. Sect-ion 4A.- focses on how the nimilory rfernce characteristics

a flect tilte p erfoinla re of variouls cache conisiot li tV algor it i ins; .;e c tion 5 concludes th paer

2 Chiaracteri;1 tioi of Memory Referenices

Tlb~ sod lion presents thle min 1tprocessor minill ani honitrolimcs somle nomenclature to help ex-

plain memnory access l)a t eril in niutlt i proc esnors. The, in ion of pirocessor localityv is also iittr-

lured.

2.1 Multiprocessor Model and Defintitions

The multiprocessor model we assumne for ouir analyvses is straightforward. We assumne that the
systemn consists of several processors each with its own cache memory. NMemory is accessed
through an inIterconnection network. TvV mnake Ile siiphifying assumption that caches are in-
Hnite in size to concentrate oni t rafHic can scv ow~ng to cache coherence related actions. The

specjic organization of t-he network and meniory systm is, however, unimportant to our char-

act erization of locality .

We first ilntroduce somne nomenclature to help explain memnory access patterns. A block is
the unit of data transfer between the cache andl iain memrory. The block size is assumed to be
I wordl (4 bytes) unless otherwise stated. The small block sie is chosen so that the reference
bphavior for each data object can be (lerived. Ilowever. characterition using larger block sies
is also important to study the spatial locality of share d objects. and is dealt with in Sections 4.3
and 4.A. A rrad-sharrd block is one th at I.: shared (accessed by multiple processors). but never-

wr-it ten inoforn the duration of the trace. A icch -hacd block is one that, is shared, a nd writtenl

at least once. A cpu-sharcd block is one that is cit her read shared or write shared.

It is useful to have a notion of time in the context of muldtiprocessor execution. Our traces
con interleaved mnerory accesses by thle various processors in approximately the same order
they occurred. Hlowever. thle exact time at which the reference was made is not clear. For
example, if the p~rocessors &, j, anid k each miade references at real time instants t, t ± 1 . anid

to (m.i the t race might have the references i. . jt A1. . i ktI±i. where the order of the Xt

Aro~rnces of t he 3 prcssr night he ran doti withl respect to each otlher. The traces also shiow
eV~rs of niernory, referes by t he sa lio eroccssot'. and th lie injt erval between reference>-

by the samle processor also varies.

Owing to suich stat i ical variations ini I& lieicerc pat ternl. we will use ani a pproxi nlat-ion

to reaI1l hu. Thei order -F ()c.Illie (if al tei iii , iholi tr~c(is our index of time. So the(rl

reference in the trace is considlered to liave occurred at timle /r.' Because thle paper considers

sevra e 'i ases whore thle traces aire filt ered1 to extraci(t specific references (e.g .. shared uiser data),
to eniable comnparisons. the timie index used for ;t reference depends onl its index in the origi iI
raco. For example, when we flte1 out operat ing sy stem referencos while studying sharing in the

user ii(ldress space, the time index of at user reference corresponds to its position in the unfiltered
race.

ile ensiuing deli iii t!~ fi i i plai rg mu llt iprocessor locality focus onl thle sequence of pro-
et ssotc, referericil rig a u n Mt iory block. C on trast this viewpoint with uniprocessor locality

Int I vjricallvN focusces onl t III, st spiu(oif mo-m(Ifii u(ddresse-s referenced by a given proccssor. A\
IrI erenlce to a lioc k 11 vY p rociss.,or i is salit to li ng if the previous reference To that lblock was,

I1\ p roceesor Jwhfer j n i. %\(e (all slich referenice a Pinging I'(fecrncc. Conversely, a referon c,

To at block 1B by prilcessor Iis ;tai(l to cl('inrg if thle previous reference to that block v~ a.] also 1) '%
proceIssor i. S)uch a reference is, ca;lled aI cl iging rf(cutic. By these definitions, a ping can oilY
cceur onl a reference to) a sliareoi block. Pinrgs arid clings to a block are determined simply b)y

kengtraick of wlii cl processor last rv feretired a block. SiniiarIv. the current state of a block.
cleanl or dir1t v. is deterilii i nd mi'lv bx filie i efereruces of thle processor accessing it currently. A
b~loc k is said to be dirtY if it has been writ ten in to sinuce tile p reviouis pi uginrg reference to it.

1 e fore, a block aiwa vs starts out clean followinrg at ji ngintg reference to it.

Fgre 1 depict, read/wrlie references toi a guvei inernor'. block, where the number iii tli
>POCOIAt ce orreslpondIs to the, processor iccessimtg tilh- block. The reference by processor :3 ati
time t-_- 23Is ai pinginrg readl refeOrence, thle reference at time 1+25 is a clinging write reference.

2.2 Chiaracterizittug Locality

Thie rot ion of clings arid pinug, ;t lo~k. s thre derivation of'si ruple criteria for mutlt iprocessor memory
reference locality. The appeal inrg feaftureofcli rigs and pi ngs is that they do not depend onl imple._
ii ioutat ion dletalils suich a's cache silzes. Ili i a(11it on . they provide useful in formation about. cache

fiurfrilanci'. For exa rn pie, aissuii rig a loca;l cac lie. clinging readl references do not caulse, a nlet -
Wti' irk a rsacti on: onl t heother l i (I, pirigi tig write re(ference alwkays cauise anetwo;'k transaction.
-1 iio enls ili discuission ises taisic derived froin puings and clings to st udy loc;,lit v.

1, opoci'ul locaity is (lispla~ed by refer''ruces to a given block of data that a,-e clustered iin
liii a. Sminall t imre intervals h et ween cliiiimu references denote -i usefuil form of leroporal loca-lity
I,. 1mirultip~rittesors; covesly 1mli tilnre i it erva Is between pi nginrg references is potentiai IV

i;rlInI i. III tile referenice se(oerce depicted inl Figure I temporal locality of clinging reference,,

lI'ri rzile!vatsnertweeri piging aid tlirgirug. references are at useful rriet 110(of depicting thie
I() pr uaitlv of Slan l-rfiveiluorv referetice ari1u1 cim yiel(I unsefril insights tint,) the behavior.

o4 sn1i"11 talules Ini IlItipr~ocesor eni1virotlileitls. Ilowever, a b~lock might reside in a lairge cacheo
forI longt perntmls of toif' wit hun! heiiig displaced. irakIng the relative sequence of references tIn
;I hinibouk bY % iri(Iuis process otrs a rilo iipotarit dletermnflrant of cache p~erformanice. The
forir11 o)f 1b)caIi1t hat htlu os more, Important,. then, is called processor locality.

l'H .~'lfotilf? is tilie to'uouiutv of aI proce'sri ' to (a c-sS a blond.: rel)C t('ioedY fr anl acce(,s

\\ trvlat firl, tirrie 1.iltusiririri are niot igrliilti inl our str'N1. T(appres imate redt time, erie (-;Ii
k s;1 % lrt ijat t'rn tire Ii(rreriitfe hN ori, ir11i, for c% -r v il r'frrnie n Itt nit Ir ate witrer ni S thei i urnibr f
pr(, -- r, Ii 't w I,,t i, ' fl Ip' f ill 11 1,11 1 - All be. uIti d , 1 ro ; r I riiigli its of Ie ni1,l1
liii'

r rr r r w r w rr r Read/Write
2 22 2 3 3 3 2 22 2 Processor \#

I--------- I -------- I -------- I --------- I --------- > Time
t t+1O t+20 t+30 t+40 t+50

[Figare 1: Characterizing locality in multiprocessor iienioiy lnrferences. Various processor accesses (rep-
resented by the numbes in the s, cond row) of a given bloc',1 B are shown. t/w stand for reads or writes.
The tinie instants with no corresponding references iply accsses of blocks other than B.

from another processor, and is measured by the average length of the sequences of clinging
references. In Figiire 1. the average iniber of clinging references before a pinging reference is
(- 34- -1)/3.

We can derive a class of processor locality metrics for use in different applications. For exam-
pie. a characterization that does not distinguish between read and write references is enough to
anal'ze cache coherence schemes such as the Dir NB directory scheme studied in [8]. However.
this definition is unsuited for a cache coherence scheme that allows multiple cached copies of
clean blocks. Therefore, a more practical definition of processor locality measures the avcrage
length of those sequcnces of clinging references, where at least one reference is a write. This
definition yields (3 + 4)/2 as the measure of processor locality for our example.

In general, we can use the following notation to describe a processor locality metric:
r./ w+ / tp. Here, r and w denote reads and writes to a block by a given processor, +
denotes one or more, and * denotes zero or ntore. Sequences by the same processor are termi-
nated by a pinging reference of type t. The type of the pinging reference can be a read, write,
or either (denoted r. w, r/w). The length of the ?./* n+ /* sequience determines the processor
locality. In this notation, the two definitions of processor locality in the previous paragraph are
r, U', r/tLP and r, u-+ r/w. respectively.

Processor locality measures locality in shared references alone. It is meant as an aid to gain
insight into the shared reference patterns of parallel programs and usually cannot be used to ob-
tin performance data directly. For instance, an application that has very few shared references
will have a low rate of cache coherency related transactions even with abysmal processor local-
ity. Consequently, a performance model might consider using the fraction of shared references
in addition to the processor locality parameter.

A direct impact of processor locality is noticed in the performance of various cache consis-
tencv schemes, which exploit different locality patterns in references to read-shared or write-
shared blocks. Notice that a high temporal locality of pinging references yields a low processor
locality, and negatively impacts the performiance of multiprocessor caches.

Spatial locality is the tendency of processors to access data in the vicinity of a recently
accessed memory word in a given interval of time. Clearly. a useful form of spatial locality
increases tfc probability that a given processor accesses words in the neighborhood of words il
accessed recently, while th, opposite form of snatial locality increases the rate at which other
processors access these words. Put another way, spatial locality can be useful in multiprocessors
if a larger block size increases the processor locality of shared references. As we will show in
S',,,lion 1.3 increasinl tie block size d nos tni always increas, li, proc 'ssor locality.

3 Applications and Data Collection

() it -;t lid 'v is based otn t race attalx'-,s IThe t rat('e> me obtai ned usinig a mnutlt iprocessor ext eris1ioti

of thle AT U M tracig scietie 19]. AT U \l st and,, for Add(1ress Trac ing tIsinrg Microcode anrd workL
as tell)ws: During thle 'xeciitiott of each inst ruit it. tie(microcode writes out thle rienor v refer-

etices Miadle by the processor to a portion of meitiorv reserved for tracing. lIn the mnultiprocessor

Oxt(en1ioit of Al 1 . eah ccs-- to trace ineniorv ilit erlocked tocenable the it. jerocode iii several
processors to write their referetices, to 'hiis invinorVy. lThus a trace c(itttar ins interleaved a(Id re.

st reatim1 Of several p~rocessors. [lie traces uisedl for this study~l were gat hered)in a 4-CPU' VAX
si i iac lino ru nninrg tie(MAC(il operat inri svst etit. Each trace is roughlv 3.5 million referen ce,

10il g. lit~ adldit ion to adldresses, AI UM records- thle op codes, and the virtual -to- physical traits-
I at ions that occur du rinrg t ra ittltott -lookaside(- btifFor mnisses. A location is con sidered sitared

wlen it is referenced by' more titan one C'PU. Because different, processes could access a givenl

>bared location withi di [fereit t virtutal add~lresses. lh am ig is detected by translating the various
Vii-ri a a addresses of a shared locat ion to its coililoti physical add ress.

The traces used in tis paper ;ire obtained from three programs: ParaOPS.5, P-Thor. and
LocusRoute. ParaOPS5 [10] is a p~arallel implemreritation of a rule-based programming language
called OPS5. which is a widely used -anguages for the building expeit systems. It exploits
parallelisuti at a fine granutlarity and makes extensive use of the shared memory provided by the(
a rchiit ec ture. P- Thor is a p~a rallel implemnen tat ion of a logic simulator done by Larry Souile at
St aitford (iversity. The simulator transforms the task of circuit simulation into a series cf node
-valurat ions, whiere each node corresponds to a device ini the circuit. The parallel implementation
evaluates, thlese nodes ;i tiarallel. while 11atdliv itt le depen denlcies between them. LocusRoute.
is a parallel V'LSI router writ teti by Jonat harn Rose at Stanford (111.

3.1 General Statistics

1 Mil> tl 2 presoitt sortie race staies meloevanit. to 'his stldv. Becairse the instriwct,11 qnic"-

ivmlvreau-ontlv, it (calt he t reatedl slpeciaillv litn itnory management, and so the statistics.

PreM -'Ilted in) this paper c-orresp~ond1 to dat references alone. Phe columns iii Table I denote
it, i.,t al numtbter of u-ser references, user (data references, user data shared, and shared write
eferen eos. last ruction and] data references are about equal as expected. In ParaOPS5, P-

T hor. ;1A L Ioc lolit t, Shiared (hat a references coti prise rough ly 20%, 10%/c amid 3% of all user
tetrnci'.The correspoitol iri fractionis of shared write referertces are about 37C, 1%, and 0 .2 '/'(

lahlo 1: S1tt1ttuviry rf dynamouic trace cliaracteristics.

[Iser II' lt eCePS)a1ta Refereriices S hared H eferertc-s Shared' \'ri tes1
bra 1II 4 l1tamos (thlous ands) (thousands) (thousands)

A 52 s1I 13-1G .576 7

t 1)7ilOP5 _7_ 1527 T16 2.1

Lo(. 1528'1

I~~~ 1'Tit.~ l n habit d2 p il (' li utitter of ttitie user lools. ique sltar(dlo twk,,.
a it d 1 li ie shi red w rlfi ei blocks lin tie(t races.

)Ili ;Ili; !% -(- lit tis, 1'lw fouii~s ott user refer''ntces alonev. Ixcept 1-'Vor, cuir applic;it i-aM
LI ti 1()l 1I sitilficalit aitillitt of proces"s iiigrattioii rehateil sharig: rthe few blocks thIat are

6

l d']'Io 2: Sumimary of stat i t race chI:Lrm:t - ti s ()it wtsr d: it ;i 1Ide)-ks airv, w (Ir-I

lta it BloT-ts Siiii l ataloltk, \\riio-liartl i Bloc ks

Trace th1w sand~l I (I;)I houalds) 11 ctil

ParaOPS5 2!. ~ 1.0 IO
l'-Tlior 71.9 lS1.3

I Rcisltutt' 11.6 3.3 0.7

slha~ec by mu tltiple procossor, ;Aly due, to pro,,o,' itiigrat itt cir, lot cmtiitl iii with5i tf
blocvks. lH eul t onel sharin in A lier-al ing '.-trin, i hI~larim!',t\ i to procvess luig rai uI C,!

4 Results and Analyses

1 hs sect in first an alvzes temtp oral locahltyV ill t lI race s. We' lieul evaluate tile processor becau i

in the traces and the impat of hI ck size on Ii his pa rajitet r. Ne eval iiat edc three difflerent caclit
coherence schemes by the amount of t raffe they gen-ra e for various block sizes. This paper,

muunarizes our findings and uises processor locrt lt as a mcneari of gaining insiht into thir
beh avior. Vi~nless --tated] ot her-.i.so, we assn no infIiite cat li:- itnd - byte blocks.

4.1 Temporal Locality

IThis secton deals with dyntamic menmory acctess patternis anid c ha racterizes tihe ternporal It cili

of cpu-sh aredl user data iek ven ces. INe p)roseil thle median of thle (list ribut ion of time intIe rval..
b~etween clingig and pinging reference6 in Table 3 to dernoutrate the tenmporal locallity of tit

references.3 The average interval of time bet ween accesses to lie samne shared block tends to 1)
large because even one reference with a very large interval (or an oiltli(r) can skew the aVernulif
towardls large values. Such outliers are not important for two reasons. first, in pramicAl NO-it
Wied caches the much shorter cache liim of blocks would preclude such large values. Second.
the large values in our aplications is chelly Orce to clinging references that occur wvhen the,
process resumes execution on the samne processor after being switched out. Therefre, in the
context of tune intervals, a more interesting inumber is the mnedian, or the time interval over
which half the clinging or pinging references occur.

Tabhle 3: Temporal locality characteristics. Only user data blocks are considered. Wlok Wie is I word (41
b\ ies) Nuimbers dfnote the median of the fr-eqiut'urv distribution of timie intervals between thIiree evnts:
elriging referencns, pinging references, and pi nginig re-ferences to a dirty block.

Trace Cling Refvem ncos Ping References P~ings to D)irty Blks

P a raOPS5 231 10 :363
P-Thor 25 j7 1779

Locu sRoute 28188 1:3869 19711

Ini 1ParO IS5 and P-Thor over 50%, of th lnIervals between clinginrg references are 257 Ii rite
unit,, or less. Not surprisingly, these 11tilihirs hdow Ihtit blocks are re-r-eferenced at Small intervals,

IFor d etailed freqincu' (list rili)ti(Jr graphs, soc f'I.

I i~I~e~l'Ila"' a itttit 'ilinti'rCal. Ili I.,cut'l-Joiitv. wires are selectA' at ranidomadi ;

- - .t :.t I Ol i. T iit gI It(sg bli atit tom''n c loItcality l in re'ferencing the -lemvleit', tI t(

;i,!, 11 tlLpii11 \v ii ltt te'1I(r telniloral localite , v ight favor routing wires in a givit.1
[,)hH rat ltier t hall tiie'etliio a wit're at ralildoll to increase the p~robab~ility a give'n \vti)ri

1 S Iot u'Ii a chII)Ic f will bl)iefil tat a! loc.ality also.

- 'n 'in ti tea i r'ii Its ar t Con lpitre'd with t hose for pinging references, or for
1 ti H;Ir hr ipr ce-~Sor foilmo bteth a r'ference from anothe-r p~roces~sor. 1 he 111110

.' :' ar', t: r'0>1 i tilv r twvr Than for (Iiligil I- eferenlces. WhiCh salts that reference>,I(
b. (1 hr olorit proce'.Ser> are usuiallyv at least as finiely int erleaved as referen co', 1v
'';C'C~-'r.) it i'~>r.The callse if tit' higah temporal locality of pinging referonc,

a' i tcltiii ci> xplitprlllst at a line granuilarity, and the use, of spill lock.s !wc

<a u'''i-lli aitil.'. tin aditilti to a hr-1 1wa at a low time interval. our fre~qt(ie'ne

!::' r pltie- It we'. i m 'nll v sctmid 1wa~k at '256 time units, li lt -llor owing to I liv pr(,

~~~P) tn t ro>-Ort fctlhtwiiig, a cetitiext. switch. If the level of process, uligraill

.':.~ak ita it'.'tni';it'ra i~t Ittitie miuich taller. whticht fa-lselv ugst'
* ' :.u' 1 tw'~t~'.ti ) ral ictltrel-hi'drf'rtis.Inreltpos uirtn
... a>'' .e i titittiit 4 Tli' kCvitctllr% cr1 'iitt clocks, appear -,haredc. and~ it is refereitre'-

T > k; e e :11,1 tao >e' ieo taill -' ecmitd p'a k.

''I' -nt- Il lint l- iiijht l e''ic tanditt write re'fe'rtices. iaktti

l~e'atit ii mir :ioghi.1t'r im~ltce Ilijij1t iprittessor architecture., wriite-

'''ii- t )diryltv c>ciie let it affit hecaul1e the neOw valle of thed(irty hloe'k
w Tl'dl-~llttC't tit "llt recque.st ingo pro~cessor. l'he time interval betweenpigg

lltck fttr thc' Itte aptjlicaticcisis far greater than the( corresponiding tI'

Unt' ttfe.rt'ice1. lie highl freqellto (ef pinlging references at hew timec intervak I-'
!C I 1Ittatlt To read i th'reiicos. A\p>i~e case i.s the test -atu-t('sIk.et sYncliroitizat ll

f .'. : In It (C' It Il expltt'C't niiiltfle roel- fhtin several prcsos leut less frequitti
hr'' lm'lCltral lIty111 ill pitigiltg refe'ie'tce's to dirty bclocks encouirages us to Ieiv

'' C ' I l ,d ldrietl C ( Is all he cett"ile'i''el it>, lriv'ate and no traffic need he generatcd

ii a''''tipi~tttl('itthe'. One coticluIsitiI "I his observation is that cache inanigeniell

1.2 Processot- Local ii v

- clit> ~rix lvc' . ~tik-'itc' e'xpet' tee sar ill I li( cache Iter long ieriocis oIf tittie at.l'
1"14 C' hiactt-ri/zation l '.l t' niotionl of prto'e'ssor locality%. Our di itissioti here c r's'

etc t-%. Icaill ti~c Iwo wr. [li frs uses, thle numbiter of dingitig references to' a hlecc\
7 t~ t' I aii0 t4e sototld h1n1w ie' of (iliighcg- refe'retces to a block, given that at leet,

e Ct C Cfi' efe're'ti ct's wa a w ite r, ?t u./iu'p

'2 e 2 'ihm-s tie', fre'que'iev lst ogram of tie', tntmtier of ('linginig references to a block. gireit
14111 c'M elfite f'relit wats a write. D~ue to f lie, wie raniger of thle nutmber of refe'rences. the( bit1 -

()It t it,, X a,-a< iticre'ta-a Ill powefr> of two: a hat' at x' withI height yj ili the frequency' histogratm p)lt
iiilvthie's y/ se4 eju'iestf clinging r'fe'ronces cef le'ngth /i. such that x < t< 2x. Here, we will tume



I ' because te avr ;it 1 is I nu IIre nrlia 1ye I ((Ii's l loc(iljt V t I I a I I rI 1*iati
a'Is l l tIarge nurit er of i efe I'I ces., ari wIn -II111i ,ht we' ed ;I( co(I-dill ,IV.

Several obse~rvations'. can lie miadl froiii I enire 2. Ir thIle \vrage irirrilir of i'liiiiiti'_

vteiestoi writteln blocks 'Is 5.6 for 3.6 f)oS5 . I- I iIrI. aridII( 7. 5 for Lo('I IsRo)11t c. %\\ri (

il !'oevites are rouchI fewer t han roadls and1 tohitilmiit41 .6,. I7. anid 1.2 r'espectively 1(o I 1 -

erage(. Illne write relerence sconleiiies i( rrespondi to, the forii of p~rocessor locality denlOed

We f~iiii l gllificari t IV lower pr(Icessor locali v itl thle (list ibl)tions for clinging referenlcos
w . i e ejxed i lie reqIlii'rent t hat each 4(;I1 heCe hitave at least olle write [-I]. F-or examile.
P-ihor. thnrle are aboult 200,000 pinging refbrenrce>; to at block referenced only once hvn'; ha

:oi,;1i, proce>, or. Thne ( orresporidirnglv low ;iveraie (i 1 .3i for P Thor indicates that interlealved
t rein ( -v i. d(ferent ,roces r-s. are ats freq en! ats c( Ig rigrferen(ces. implying low prc cessol.

-a aLtv. ( 11he s. veraaes or P; aO PS 5 and Loc iis oiit e weiv e ., . and 2.5 respectively.) A c8(lh
o Iai sehnarnle Iha allo\ ed oily one, cached eop-of 4i an block [H, 1 erformod ab * smal *lv for-

[Iv eao. Arnoti"I her i iortllt obsvatv; loll is that th lIotal imimber of pinging referenlCe>,

are bpp oxi knal are an ordler of' ilail' iil!'' lowver I hall all piriginig references. wvhichb
tlv-! he overall1 ralte of (cache coi-' It erl(' lf'hltltr nsatlrs

Otte o' thle chi ef differenices bet \ en sormi of itie chli cornsistoency ch estre a e

atrite references,. One( sell of schemes. e.g.. D] G (ON [121 or FIREFL~LY [131. allow cachies
nold valid copies of blocks that are eigwrit tern Into by others, arid receive updates of' thne

I >on writes. Another set of schemes allow on lY on ir opy of' at written block (e.g.. Berkeley
(-%rrship r -Il, or various flavors of direct orY schemies T)h'[e performance of update versuls

a ai ltei p redicat ed onl the locali ty of referenices to wri te-shiared blocks. As noted earlier. t li
a V-r1.11mni ubr of writes to a block before a pinriirg reference is smiall althlough not unity 1.I-

f)r, lP-Thor) implying thiat eit her mnet hod will riot overwhelinirngl v out perform the other. Onur
res tilts, it tie next section show that the Inrval idait e -n rd ii )(late schemies perform similarlY foir

wkoi-l block sizes arid hear ouit this intuition.

'lhner(, are several possible reasons for the low value of clinginrg write references. N\e( expo-e
at low valrue for write references t o spinhiocks. \Ve also exp~ect t his value to be low for inigaratorm
-hared objects (7] which move from one procossor toJ another, with each processor making soie
rrodhi fi cat Ions to the object. Also mostly- rea (I-on iv oh hefts are wvritten once, and then ilnrmeoi

prrn radl references are madle by other prcsos

We also studied the( distribuitiori of the itm ier of cliniginrg write references. A su rprisinrg
ol servat ion was t hat a sign ificant, fraction (of clinrginrg sequences lhadi exactly one write. The liarger

aIverage is duev to aI small number of clirig write sequences withI several tens of writes. This

dlichot omours naturire of (-Iiri ginrg seq rien ces suggests t hat coniipet. i ye cache coherence schemes, 1151
fiat can resort to Inrvalidhations whicr, tlie numriber of write updates crosses a threshold iilt

be the right schemre to use. We also noticed that it was usually the synchronization objects,
hAt resuilted in ria clinging sequence with exactly one write.. So a nother possibility would be

to ii se an iipdate- based protocol for svn clri mizat ion ohjects, while uisinrg an invahidlation -blase~

coherence protocol for al! other, data objects. In an environment wvhere processes can ininrrate.

vet anrothIner schemin ighit in se iiivalidat ion s for private dIata objects spuriously shar'ed (lir to,

procfess inigration and rise updhates for otlier bloc ks.

Ini su t rrn'rv. we sa t hat the p~nwessor locadltvo l;re rfrne is moderate, with roiirglnl

'2 %, rites arid -A reads, oii average to) write-shar ed objects before at pingimng referenc'e. Giv en Ine
tiodherate processor locality of sliared-(Ia t a. ivalidlating sc henies siicl as t le Berkeley Owneor-



t4 -12
10 0 - ParaOPS5 (Ave=5.6, Med=2 0)

6- P !

4

2

7 2 4 8 16 32 64 128 256 512 1024 2048
Number of Refrences t a Dirty Block betmen Ping.

Y 2

10 - P-Thou (Ave=36, Med=2.0)

0F

U 8

2

1 2 4 8 16 32 64 128 256 512 1024 2048
Number of Paterqncee to a Dkty Block behtwon Ping*

2 LocusRoute (Ave=8.8, Meal=3.0)

I 2 4 8 76 32 64 728 256; 572 1024 2048

Numbe.r ol Paefa,,ncao to a Dirty Block beteen Ping.

"i~g, 2: Di~.tribution of the number of references to a blocK before a pinging reference to the same
block. given that at least one reference was a write. Only shared data references of user are incluoed.

10



iolu AA.

-1.3 Spatial Locality"

Weiiov examinle the effecis of 51pala lo lllv V lthe lierf)(itiniue of cache coherence sclueuuu-.
l-ii2Jlres :3 anid 'I plot processoir localltv lui lusnrairu For Ohw Hiroo i' appbations for 1)ock sizes ()J
I Gj aild G-1 bvtes. lI he averages, for I ht, t hree 1h1,)(-k sizes ait'' shown i it Table 1.

la')le 4: Spatial localityv and tite imipact of block size. Only user dat a I-locks are considered. N umhers,
dlnote the( average of the nihller of clinging referirures to a block, at least one, of which was a write

'Irace 1 Blyce Size
Trae 1.1 ~te 116 bytes 6.1 bytes

ParaOPS5 5. 6 7.8 7.6
P-Thlor 3.6 5.1 6. 2

LocusRoute S 29.2 117.2

Increasing the block size imnparts the various applications dIiflerently. LocusRoute shows a
sitlst aittial improvement in processor localit * (S.8 to 117.2) as block size is increasedl front .1 to
61i bytes. The reasoni for the sutbstantial im provemtent for Locusloute is that it has a central
dat a strutctu~re, called lie cost airray, accessed very frequently and in a regular fashion. thus,
residlting in high spatial locality of references." ilt comparison to LocusRoute, both P-Thor and
Pa raO PS 5 show imphlrovemntts of a mucli "'uialler imagiu e,1 aut ( in fact, the processor beau ft v
rmiasure decreases slightlY for lParaOPS5 as we go front 16 to 61 byte b)locks.

\Vhy dloes block size impact p)rocessor locality so differently for various shared applicatioii,.
As the block size is inicreasedl the p~otentiail for references to adjacent words increases and two
opposing forces come10 into play. If the prob~ability a given processor accesses a word in tlie
vicinity of a word it accessed before increases, then the processor locality is likely to improve.
Contrarily, a larger block size increases the probability of unrelated shared words residing in1
the samne block, and a write to one word canl cause a ping to the entire block currently being,
aIccPee by another processor. ClearlY. t he applications display differing degrees of both effects.

Let us lock at the issule of samne processor versus different processor accesses of a block more
comicretoly. Examne i the processor locality dlistributtions for lParaO PS5 when block size, is 16
hv tes antd Whlent it, is 6 1 bYtes (see top of 1 igu res :3 and( 4). WVe see a significantly larger iiullibor

of occurrences with 8- 16, 16-32. 32-6.1, and] 61-128 clings before a ping as we move froin 16 to 61
byte blocks. 'This intc rease is du te to the spatial locality in the references of a sitngle processor, the
positive force. Ilowevet, we also see a significant iticrease in the numiber of occurrences where
f Itre are only' k 1-2 clinugs before a. ping as we, move from 16 to 64 byte blocks. This is a result o
lie iiit erfoet-ice eJfect dili sm ab u ove. andh overutl it umilli fies t ie( advantage of the( large luloclh

Note P .hat, I hie heightI oftI he dlist rihutIion beroues 111h11ller as block sizes are( i nCrTC;l liecauise even sinall "I\dit, -
,i t ihr tail end of the distribiion c-orrespond to a larg-. Iiliibr of referencs. ]-Ofr examiple, in LoctusRoitte, i

,il f IS -qu(I~rncos of len gth between '256 an d 5 12. wli ItiI act ounit for severalI thousand references.



1814
I-14

S10 - ParaOPS5 (Ave=7.8, Med=3.0)

2

1 2 4 8 16 32 1 128 25 $12 1024 2048
,.Mnber ot RPwinwc to a Dirty Block behwn P*

12 12

I 0 - P-Thor (Ave=5.1, Med=3.0)

1 2 4 8 10 32 64 128 256 512 1024 2048
Number of Rvkwrce to a Dirty Block betwm PWg.

2- LocusRoute (Ave=29.2, Med= 14.0)

I

2 4 8 16 32 64 128 258 512 1024 2048
Number of RrAww. to a Dirty Black behtowen Ping

Figure 3: Distribution of the number of references to a block before a pinging reference to the same
block, given that at least one reference was a write. Only shared data references of user are included.
Block size is 16 bytes.

12



1 8

16 4

14

12
10 ParaOPS5 (Ave=76, Med=20)

c-I
4,

2

1 2 4 8 16 32 64 128 256 512 1024 2048
Number ot Wterece. to * Dirty Block between Pings

12

10 - uP-Thor (Ave=6 i2, Med=4.0)

1
2

0 L - I
1 2 4 8 16 32 64 128 256 512 I22048

Number of Pfwrences to a Dirty Block between Pinge

- 2 i LocusRoute (Ave= 17.. Md=47.)

1:13
1 2 4 5 18 32 84 128 258 512 1024 2648

Mumber ofel ia-MIC0. to.a Dirty Block betwven Ping*

Figure 4: Distribution of the number of references to a block before a pinging reference to the same
block, given that at least one reference was a write. Only shared data references of user are included.
Block size is 64 bytes.

13



4.4 Cache Consistency Implications

Processor locality impacts the performance of cache coherence schemes. We examined the per-
formance of several cache coherence schemes through simulation with the ATUM traces for
various block sizes and used our notions of processor locality to gain insight into their behavior.
Our findings are summarized here. We also discuss some of the limitations of our definitions of
processor locality, and suggest modified definitions for use in specific applications.

Of the several cache coherence schemes proposed in the literature (e.g., [16, 14, 12, 17, 13]), we
consider a representative each from the write-through with invalidate, write-back with invalidate.
and write-back with update classes of cache coherence schemes assuming a shared bus as the
communications inedium.' To help explain the various phenomena we observed, we use the data
presented in earlier sections. As ' efore we assume infinite caches, and unless otherwise stated,
block size is one word (or four bytes).

The write-through with inralidat( scheme (WT I) is commonly used in low-end commercial
multiprccessors. In thin scheme, every write from a processor accesses the bus both to update
main memory and to invalidate that location in other caches.

Examples of write-back with invalidate schemes include Goodman's write-once [16], Rudolph
and Segall's scheme [17], Berkeley Ownership [14], and the directory scheme [201. We consider
write-once (denoted WBI) as the second scheme in this paper. In this scheme, the first write to
a location uses the bus to update main memory and to invalidate that location in other caches.
Subsequent writes to that location by the same processor do not result in any bus traffic, as
that location is now owned locally.

1l"ritc-back with update schemes include Dragon [12] and Firefly [13]. We use Dragon as the
third scheme, and denote it WBU. In the Dragon scheme, all writes to a shared location (a
location pri'sent in multiple caches) result in a bus access to update the value of that location
in other caches. For non-shared locations, the cache acts like a regular uniprocessor write-back
cache.

\Vo evaluated the performance of the above three cache coherence schemes in terms of the
baus transactions generated. A bus transaction is generated on block transfers due to misses,
invalidations, or updates. Because of our interest in characteristics of shared references, we
only include cpu-shared user data references for ParaOPS5, P-Thor, and LocusRoute. Because
caches are infinite, a data item brought into the cache remains there until invalidated

Before we discuss our results, we examine how we might choose an appropriate definition of
processor locality for a given application. Recall the three variations of processor locality in Sec-
tion 1.2. The first form simply counts the number of clinging references to a block (re w r/wp).
In other words, we use the average number of repeat references by a processor to a given block
of data. The second form counts the number of clinging references to a block for those runs that
includ(ed at least one write reference (r w.t r/wp). Figures 2 through 4 plotted distributions
using this second form. The third form counts just the number of writes in sequences of the
second form (u r/wv). Eggers and Katz define and use the same notion in their evaluation of
cache coherence schemes in [5.

The first form is useful in analyzing cache coherence schemes that allow only one cached copy

5While a detailed analysis of the numerous cache consistency schemes proposed in the literature would be
interesting, it is beyond the scope of this paper. Instead, see the simulation study of several cache coherence
scheme by Archibald and Baer [18], and more recently, the simulation study using real address traces by Eggers
and (.itz r19)

14



of a block (e.g., the Diri 1 NB scheme [s]). I lie second forrm is useful in examining owners hip
ba, ed p'otocol,. where a wri'er niust first btcU(,e te sole ,,wner of a block before proce.,ding

with the write The third f,,'m is neces-;r rv to disti igish between invalidating aid updating
(or write-through) pro! )cols.

We first compared :he pc :orrnance of \\T], WVI:l. and \VBU for 4-byte blocks using form
three of proces. or local ty. C( ia paring the nu nber of t ransactions, we saw that the WTI scheme
was worse tha-i both \VBI i ud WBU. \VTI looses to W131 because of the processor localit v
displayed by write reft rence:. While every write generates bus traffic in WTI, clinging write
references do not cause bus traffic in WBI. In fact, recall from Section 4.2, that on average there
were 1.6. 1.7, and 1.2 writes in a sequence of clings before a ping for ParaOPSo5, P-Thor. and
LocusRoute respectively. Based on these nurnbers we verified that the greatest savings between
WTI and WBI to be for P-Thor, next greatest for ParaOPS5, and least for LocusRoute. For
example, WBI in P-Thor saves -19% bus transactions over XVI,. ParaOPS5 saves 31%. and
LocusRoute saves 11%.

Comparing WTI and WBU, both schemes generate an update transaction for every write
to a shared location. However, WBU saves about 2.5% updates because before the point that a
location becomes shared (a second processor requests it), only the first read or write produces a

bus transaction. WBU also has fewer block transfers because, unlike VTI, it never invalidates
a location from a cache.

Let us now compare WBI and WBU. WBI, in general, will be superior to WBU if there
were a large number of clinging writes to an object before a ping. This is because. WVBI does
not produce bus traffic after the first write in a sequence of clinging writes. Again, recall from
Section 4.2 that on average there are 1.6, 1.7, and 1.2 clinging writes for ParaOPS5, P-Thor.
and LocusRoute respectively. Thus WBI has the greatest chance to win over WBU for P-Thor.
next for ParaOPS5, and least for LocusRoute, which is borne out by simulations. WBI wins
over WBU by 28% for P-Thor, by 3% for ParaOPS5, and loses by 21% for LocusRoute.

Dividing the total number of bus transactions generated by all three programs for the Will
scheme (161.6K) by the total number of references that resulted in these transactions (1168.7K),
we see that there are approximately 0.138 bus transactions generated per reference. This number
appears quite large given infinite caches, ard there are two reasons for this. First, this data rep-
resents only cpu-shared user data references, \,bh show poor processor locality as in Figure 2,
or equivalently, which display a high temporal locality of pinging references. Consequently theN
do not benefit much from the read-sharing allowed by the WBI scheme. If one includes both user
and OS references, and both data and instructions, then the number of transactions per refer-
ence falls to 0.031, which is much better. 'his reduction is primarily due to the large number of
read-shared references generated by instruction fetches. When the block size is increased from
4 to 16 bytes, the number of transactions per reference further drops down to 0.016, primarily
due to the high spatial locality of instruction fetch references.

We then examined the bus transactions generated by WBI as the block size is increased to
study the spatial locality characteristics of cpu-shared user data references. For this analysis the
second form of processor locality is relevant because once a block is read, a tranvaction takes
place only on a pinging reference -- on a pinging read the block maust be written back to memory,
while on a write the block must be invalidated.

We observed that the measure of processor locality using the second form correctly predicts
the trends in ParaOPS5 and LocusRoute. For example, the transaction rate in ParaOPS5
decreases when the block size is changed from 4 to 16 bytes, and the number of transactions

15



increases when the block size is further changed to 64 bytes. A corresponding increasing trend
is observed in the second form of the processor locality parameter (see Figures 2 through 4).

A different trend is observed in LocusRoute as the block size is increased. The transaction
rate decreases as we go from 4 to 16 to 64 bytes, a corresponding improving trend is displayed
by the processor locality parameter for LocusRoute as the block size is increased.

The trends in P-Thor, however, did not match completely. A possible reason for the dis-
agreement we observed is that the second form of processor locality as defined by us corresponds
most closely to a protocol that invalidates a currently dirty copy of a block in a cache on a ping-
ing read rather than just performing the writeback and making it clean. If a more accurate
processor locality metric for analyzing performance of ownership protocols that clean rather
than invalidate is desired, one can measure the average length of sequences of references to a
block of data by a given processor, terminating the sequences only on pinging writes. This form
of processor locality is denoted re w

+ Wp. The important observation is that the notion of pings
and clings make it possible to customize the processor locality definition to suit a particular
Z"',-! C At ion.

5 Summary and Conclusions

We have characterized locality in memory reference patterns of shared-memory multiprocessors.
Our data is based on traces obtained for three applications from a 4-processor VAX 8350 using
the ATUM address tracing technique. About one-fifth of the references in the traces are to
shared objects.

Shared references display a significant amount of temporal locality, but only a moderate
amount of processor locality for both read and write references. For example, the average
number of reads and writes to a write-shared block before a remote reference (a ping, which
may possibly invalidate the data) are 4 and 2 respectively. Nevertheless, caching shared data
is still highly useful because of the significant amount of read sharing. Although the average
number of writes to a block before a remote reference is just 2, we observed a high variance
in the length of write sequences. We believe that the use of hybrid updating and :nval dating
schies. such as updating for synchronization objects and invalidating for others, or a dynamic
competitive cache management strategy will prove useful in such environments.

The locality characterization of the shared-memory reference patterns also yields insight
on how various cache consistency schemes will perform. We analyzed three classes of cache
consistency schemes-write-through with invalidate (WTI), write-back with invalidate (WBI),
and writo-back with update (WBU). For shared data references, WTI performs worse than both
WBI and WBU as it uses the bus on every write. Comparing WBI and WBU, the former seems
to have an edge for 4-byte blocks, while WBU does better for 16-byte and 64-byte blocks. The

processor locality parameter shows that blocks larger than 16 bytes in P-Thor and ParaOPS5
cause a degradation in processor locality, and thus the total bus traffic increases rapidly with
increasing block size. The WVI[7 scheme is less influenced by the block size than WBI and WTI
because it always uses single word updates. Consequently, for large block sizes, WBU performs
better than WBI and WTI for all three programs.

16



6 Acknowledgments

We thank Roberto Bisiani and the Speech Group at CMU for letting us use their VAX 8350 for collecting
the traces used in this study. Dick Sites at Digital Equipment Corporation, Hudson, made the ATUM
microcode available for our use. Larry Soule and Helen Davis at Stanford heiped with ihe P-Thor
program and Jonathan Rose with LocusRoute. Discussions with Susan Owicki, Susan Eggers, Mark
Horowitz, John Henuessy, and Rich Simoni are also gratefully acknowledged. The research reported in
this paper was funded by DARPA contracts #I MDA903-83-C-0335 and # N00014-87-K-0825. Anoop
Gupta is also supported by a faculty development award from DEC.

References

[1] P. J. Denning. The Working Set Model for Program Behavior. Communications of the ACM,
11(5):323-333, May 1968.

[2] J. R. Spirn. Program Behavior: Models and Measurements. Operating and Programming Systems
Series, Elsevier, New York, 1977.

[3] F. Darema-Rogers, G. F. Pfister, and K. So. Memory Access Patterns of Parallel Scientific Programs.
In Proceedings of ACM SIGMETRICS 1987, pages 46-58, May 1987.

[41 Anant Agarwal and Anoop Gupta. Memory-Reference Characteristics of Multiprocessor Applications
under MACH. In Proceedings of ACM SIGMETRICS 1988, May 1988.

[5] S. J. Eggers and R. H. Katz. A Characterization of Sharing in Parallel Programs and Its Application
to Coherency Protocol Evaluation. In Proceedings of the 15th International Symposium on Computer
Architecture, IEEE, New York, June 1988.

[6] Richard L. Sites and Anant Agarwal. Multiprocessor Cache Analysis using ATUM. In Proceedings
of the 15th International Symposium on Computer Architecture, pages 186-195, IEEE, New York,
June 1988.

[7] Wolf-Dietrich Weber and Anoop Gupta. Analysis of Cache Invalidation Patterns in Multiproces-
sors. In Third International Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS III), April 1989.

[81 Anant Agarwal, Richard Simoni, John Hennessy, and Mark Horowitz. An Evaluation of Directory
Schemes for Cache Coherence. In Proceedings cf the 15th International Symposium on Computer
Architecture, IEEE, New York, June 1988.

[9] Anant Agarwal, Richard L. Sites, and Mark Horowitz. ATUM: A New Technique for Capturing
Address Traces Using Microcode. In Proceedings of the 13th Annual Symposium on Computer
Architecture, pages 119-127, IEEE, New York, June 1986.

[10] Anoop Gupta, Charles Forgy, and Robert Wedig. Parallel Architectures and Algorithms for Rule-
Based Systems. In Proceedings of the 13th Annual Symposium on Computer Architecture, IEEE,
New York, June 1986.

[11] Jonathan Rose. LocusRoute: A Parallel Global Router for Standard Cells. In Design Automation
Conference, pages 189-195, June 1988.

[12] E. McCreight. The Dragon Computer System: An Early Overview. Technical Report, Xerox Corp.,
September 1984.

[13] Charles P. Thacker and Lawrence C. Stewart. Firefly: a Multiprocessor Workstation. In Proceedings
of ASPLOS II, pages 164-172, October 1987.

(141] R. H. Katz, S. J. Eggers, D. A. Wood, C. L. Perkins, and R. G. Sheldon. Implementing a Cache
Consistency Protocol. In Proceedings of the 12th International Symposium on Computer Archttccture,
pages 276-283, IEEE, New York, June 1985.

17



Anlla Karlin, Mark Manasse, Larry Rudolph. and Daniel Sleator. Competitive Snoopy Cachzng.
Technical Report CMU-CS-86-164, Computer Science Dept., Carnegie Mellon University, Pittsburgh,
1A, 1986. Preliminary version appeared in 27th FOCS, 1986.

[16] James R. Goodman. Using Cache Memory to Reduce Processor-Memory Traffic. In Proceedings of
the 10th Annual Symposium on Computer Architecture, pages 124-131, IEEE, New York, June 1983.

r171 1. Rudolph and Z. Segall. Dynamic Decentralized Cache Consistency Schemes for MIMD Par-
allel Processors. In Proceedings of the 12th International Symposium on Computer Architecture,
pages 340-347, IEEE, New York, June 1985.

[i6j James Archibald and Jean-Loup Baer. Cache Coherence Protocols: Evaluation Using a Multipro-
cessor Simulation Model. A CM Transactions on Computer Systems, 4(4):273-298, November 1986.

19 S. J. Eggers and R. H. Katz. Evaluating the Performance of Four Snooping Cache Coherency
Protocols. In Proceedings of the 16th International Symposium on Computer Architecture, IEEE,
New York, June 1989. To appear.

1201 Lucien M. Censier and Paul Feautrier. A New Solution to Coherence Problems in Multicache
qvstms rFP Trnancqi-.?- 'n Computers, C-27(12):1112-1118, December 1978.

18



OFFICIAL DISTRIBUTION LIST

Director 2 copies

Information Processing Techniques Office
Defense Advanced Research Projects Agency

1400 Wilson Boulevard

Arlington, VA 22209

Office of Naval Research 2 copies

800 North Quincy Street

Arlington, VA 22217

Attn: Dr. R. Grafton, Code 433

Director, Code 2627 6 copies

Naval Research Laboratory
Washington, DC 20375

Defense Technical Information Center 12 copies

Cameron Station
Alexandria, VA 22314

National Science Foundation 2 copies

Office of Computing Activities

1800 G. Street, N.W.
Washington, DC 20550

Attn: Program Director

Dr. E.B. Royce, Code 38 1 copy

Head, Research Department
Naval Weapons Center

China Lake, CA 93555


